QUESTION BANK	2019
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583 OUESTION BANK (DESCRIPTIVE)	
Subject with Code : Algebra and Calculus (19HS0830) Course & Branch: B.Ter	ch – ALL
Year & Sem:I-IRegulation: R19	
<u>UNIT –I</u>	
1. a) Reduce the matrix A= $\begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$ into Echelon form and find its rank?	[6M]
b) Find the Eigen value and Eigen vectors of the matrix $\begin{bmatrix} 5 & -2 & 0 \\ -2 & 6 & 2 \\ 0 & 2 & 7 \end{bmatrix}$	[6M]
2. a) Define the rank of the Matrix.	[2M]
b) Find whether the following equations are consistent if so solve	
them $x + y + 2z = 4$; $2x - y + 3z = 9$; $3x - y - z = 2$.	[10M]
3. a) Reduce the matrix A= $\begin{bmatrix} -2 & -1 & -5 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ into Echelon form and find its rank?	[6M]
b) Determine the Eigen values of A^{-1} where $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$.	[6M]
4. a) Solve completely the system of equations $x+2y+3z=0$, $3x+4y+4z=0$, $7x+10y+12z=0$.	[6M]
b) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$	[6M]
5. a) State Cayley-Hamilton theorem	[2M]
b) Show that the matrix $\mathbf{A} = \begin{bmatrix} 1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$ satisfies its characteristic equation and find \mathbf{A}^{-1}	¹ ? [10M]
6. Find the Eigen values and corresponding Eigen vectors of the matrix A and its inverse	
Where $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$.	[12M]
7. Diagonalise the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{bmatrix}$ and hence find A^4 ?	[12M]
8) Diagonalise the matrix A, where $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{bmatrix}$.	[12M]
9. Reduce the Quadratic form $3x_1^2 + 3x_2^2 + 3x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$ into sum of squares fo	rm
by Orthogonal transformation. 10. Reduce the Ouadratic form $2x^2 + 2y^2 + 2z^2 - 2xy + 2xz - 2yz$ into the canonical form	[12M] 1 by
Orthogonal transformation and discuss its nature.	[12M]
Algebra and Calculus	Page 1

<u>UNIT –II</u>

1) a) Verify Rolle's Theorem for the function $f(x) = \frac{\sin x}{e^x}$ in $(0,\pi)$.	[6M]	
b) Verify Lagrange's mean value theorem for $f(x) = \log_e x$ in [1, e].	[6M]	
2) a) Verify Cauchy's mean value theorem for the functions e^x and e^{-x} in the interval (a, b)	[6M]	
b) Verify Lagrange's Mean value theorem for the functions $f(x) = x(x-1)(x-2)in [0, x-2)in [0, x-2]in [0, x-2$	$\frac{1}{2}$. [6M]	
3) Prove that $\frac{\pi}{3} - \frac{1}{5\sqrt{3}} > \cos^{-1}(\frac{3}{5}) > \frac{\pi}{3} - \frac{1}{8}$ using Lagrange's mean value theorem.	[12M]	
4) a) State and verify Rolle's Theorem for the function $f(x) = \log \left[\frac{x^2 + ab}{x(a+b)}\right]$ in $[a, b] (x \neq 0)$.	[6M]	
b) Verify Lagrange's mean value theorem for $f(x) = x^3 - x^2 - 5x + 3$ in [0,4].	[6M]	
5) a) Verify Cauchy's mean value theorem for the function <i>sinx and cosx</i> in the interval $[0, \frac{\pi}{2}]$]. [6M]	
b) Express the polynomial $2x^3 + 7x^2 + x$ -6 in power of $(x - 2)$ assigning Taylor's series.	. [6M]	
6) a) Calculate the approximate value of $\sqrt{10}$ correct to 4 decimal places using Taylor's theorem. [6M]		
b) Expand $\log_{e} x$ in powers of (x-1) and hence evaluate $\log 1.1$ correct to 4 decimal place	ces	
 b) Expand log_e x in powers of (x-1) and hence evaluate log1.1 correct to 4 decimal place using Taylor's theorem. 	ces [6M]	
 b) Expand log_e x in powers of (x-1) and hence evaluate log 1.1 correct to 4 decimal place using Taylor's theorem. 7) a) Using Maclaurin's series expand tan x up to the fifth power of x and hence 	ces [6M]	
 b) Expand log_e x in powers of (x-1) and hence evaluate log 1.1 correct to 4 decimal place using Taylor's theorem. 7) a) Using Maclaurin's series expand tan x up to the fifth power of x and hence find the series for log (sec x). 	ces [6M] [6M]	
 b) Expand log_e x in powers of (x-1) and hence evaluate log 1.1 correct to 4 decimal place using Taylor's theorem. 7) a) Using Maclaurin's series expand tan x up to the fifth power of x and hence find the series for log (sec x). b) Verify the Rolle's Theorem can be applied to the function f(x) = tan x in [0,π] 	ces [6M] [6M] [6M]	
 b) Expand log_e x in powers of (x-1) and hence evaluate log 1.1 correct to 4 decimal place using Taylor's theorem. 7) a) Using Maclaurin's series expand tan x up to the fifth power of x and hence find the series for log (sec x). b) Verify the Rolle's Theorem can be applied to the function f(x) = tan x in [0,π] 8) a) Verify Cauchy's mean value theorem for f(x) = e^x and g(x) = e^{-x} in [a, b]. 	ces [6M] [6M] [6M] [6M]	
 b) Expand log_e x in powers of (x-1) and hence evaluate log 1.1 correct to 4 decimal place using Taylor's theorem. 7) a) Using Maclaurin's series expand tan x up to the fifth power of x and hence find the series for log (sec x). b) Verify the Rolle's Theorem can be applied to the function f(x) = tan x in [0,π] 8) a) Verify Cauchy's mean value theorem for f(x) = e^x and g(x) = e^{-x} in [a, b]. b) Show that for any x > 0, 1 + x < e^x < 1 + xe^x using Lagrange's mean value theorem. 	ces [6M] [6M] [6M] [6M] [6M]	
 b) Expand log_e x in powers of (x-1) and hence evaluate log 1.1 correct to 4 decimal place using Taylor's theorem. 7) a) Using Maclaurin's series expand tan x up to the fifth power of x and hence find the series for log (sec x). b) Verify the Rolle's Theorem can be applied to the function f(x) = tan x in [0,π] 8) a) Verify Cauchy's mean value theorem for f(x) = e^x and g(x) = e^{-x} in [a, b]. b) Show that for any x > 0, 1 + x < e^x < 1 + xe^x using Lagrange's mean value theorem. 9) a) Verify Rolle's theorem for the function f(x) = x(x+3)e^{-x/2}/2 in [-3,0] 	ces [6M] [6M] [6M] [6M] [6M]	
 b) Expand log_e x in powers of (x-1) and hence evaluate log 1.1 correct to 4 decimal place using Taylor's theorem. 7) a) Using Maclaurin's series expand tan x up to the fifth power of x and hence find the series for log (sec x). b) Verify the Rolle's Theorem can be applied to the function f(x) = tan x in [0,π] 8) a) Verify Cauchy's mean value theorem for f(x) = e^x and g(x) = e^{-x} in [a, b]. b) Show that for any x > 0, 1 + x < e^x < 1 + xe^x using Lagrange's mean value theorem. 9) a) Verify Rolle's theorem for the function f(x) = x(x+3)e^{-x/2}/2 in [-3,0] b) Expand sin x powers of (x-^π/₂) up to the term containing (x - ^π/₂)⁴ assigning Taylor's series 	ces [6M] [6M] [6M] [6M] [6M] [6M] es. [6M]	
 b) Expand log_e x in powers of (x-1) and hence evaluate log 1.1 correct to 4 decimal place using Taylor's theorem. 7) a) Using Maclaurin's series expand tan x up to the fifth power of x and hence find the series for log (sec x). b) Verify the Rolle's Theorem can be applied to the function f(x) = tan x in [0,π] 8) a) Verify Cauchy's mean value theorem for f(x) = e^x and g(x) = e^{-x} in [a, b]. b) Show that for any x > 0, 1 + x < e^x < 1 + xe^x using Lagrange's mean value theorem. 9) a) Verify Rolle's theorem for the function f(x) = x(x+3)e^{-x/2}/2 in [-3,0] b) Expand sin x powers of (x- π/2) up to the term containing (x - π/2)⁴ assigning Taylor's series 10) Obtain the Maclaurin's series expression of the following functions: 	ces [6M] [6M] [6M] [6M] [6M] es. [6M] [12M]	

Algebra and Calculus

QUESTION BANK 2019

<u>UNIT –III</u>

1) If
$$u = ax^2 + 2hxy + by^2$$
, show that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ [6M]

b) If
$$U = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
; $x^2 + y^2 + z^2 \neq 0$ then prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0.$ [6M]

2) a) If
$$u = tan^{-1} \left[\frac{2xy}{x^2 - y^2} \right]$$
, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$. [6M]

b) If
$$U = log(x^3 + y^3 + z^3 - 3xyz)$$
 prove that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 U = \frac{-9}{(X+Y+Z)^2}$. [6M]

3) a) Find
$$\frac{du}{dt}$$
 as a total derivative; if $u = x^2 y^3$ where $x = logt$ and $y = e^t$. [6M]

b) If
$$z = xy^2 + x^2y$$
; where $x = at^2$, $y = 2at$, find $\frac{dz}{dt}$ as a total derivative. [6M]

4) a) If
$$u = \sin^{-1}(x - y)$$
, where $x = 3t$, $y = 4t^3$, then show that $\frac{du}{dt} = \frac{3}{\sqrt{1 - t^2}}$. [6M]

b) If
$$u = x^2 + y^2 + z^2$$
 and $x = e^{2t}$, $y = e^{2t} \cos 3t$, $z = e^{2t} \sin 3t$, find $\frac{du}{dt} = ?$ [6M]

5) a) If
$$u = x^2 - 2y$$
; $v = x + y + z$, $w = x - 2y + 3z$, then find Jacobian $\int \left(\frac{u, v, w}{x, y, z}\right)$. [6M]

b) Verify if u = 2x - y + 3z, v = 2x - y - z, w = 2x - y + z are functionally dependent and if so, find the relation between them. [6M]

6) a) In
$$u = x + 3y^2 - z^3$$
, $v = 4x^2yz$, $w = 2z^2 - xy$, evaluate $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ at (1,-1,0). [6M]

b) If
$$u = x\sqrt{(1-y^2) + y\sqrt{(1-x^2)}}$$
 and $v = sin^{-1}x + sin^{-1}y$, then
show that u, v are functionally dependent. [6M]
(7) a) If $u = \frac{x+y}{1-x^2}$ and $v = tan^{-1}x + tan^{-1}y$, find $\frac{\partial(u,v)}{\partial(u,v)}$? [6M]

7) a) If $u = \frac{x+y}{1-xy}$ and $v = \tan^{-1}x + \tan^{-1}y$, find $\frac{\partial(u,v)}{\partial(x,y)}$? [6M] b) Find the Maximum and Minimum values of $f(x, y) = x^3 + y^3 - 3axy$. [6M]

8) a) Examine the function for extreme values f(x, y) = x⁴ + y⁴ - 2x² + 4xy - 2y²; (x>0,y>0). [6M]
b) Find the stationary points of u(x, y) = sinx.siny.sin(x + y) where 0 < x < π, 0 < y < π

- and find the maximum of u.
- 9) a) Find the shortest distance from origin to the surface $xyz^2 = 2$. [6M]

b) Find the minimum value of
$$x^2 + y^2 + z^2$$
 given $x + y + z = 3a$. [6M]

10) a) Find a point on the plane 3x + 2y + z - 12 = 0, which is nearest to the origin. [6M]
b) Find the shortest and longest distance from the point (3,1,-1)to the sphere x²+y² + z² = 4. [6M]

Algebra and Calculus

[6M]

UNIT –IV

1. a) Evaluate
$$\int_{0}^{\pi} \theta \sin^{8} \theta \cos^{4} \theta \, d\theta$$
 [6M]

b) Evaluate
$$\int_{0}^{2} \log(\sin x) dx$$
 [6M]

2. a) Evaluate the following improper integrals i) $\int_{1}^{\infty} \frac{1}{x^4} dx$ ii) $\int_{0}^{1} \frac{1}{\sqrt{x}} dx$. [6M]

b) Prove that
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \pi$$
 [6M]

3. a) Evaluate .
$$\int_{0}^{5} \int_{0}^{x^{2}} x(x^{2} + y^{2}) dx dy$$
 [6M]

b) Evaluate
$$\iint (x^2 + y^2) dx dy$$
 in the positive quadrant for which $\underline{x + y \le 1}$ [6M]
 $\sqrt{1-y^2}$

4. a) Change the order of integration and evaluate
$$\int_{0}^{1} \int_{0}^{1} x^{3} y \, dx \, dy$$
 [6M]

b) Change the order of integration and evaluate $\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{x}{\sqrt{x^{2}+y^{2}}} \, dy \, dx \qquad [6M]$

5. a) Change the order of integration and evaluate
$$\int_{0}^{1} \int_{x^{2}}^{2-x} xy \, dy dx$$
 [6M]
b) Change the order of integration and evaluate
$$\int_{0}^{4a} \int_{0}^{2\sqrt{ax}} dy \, dx$$

- b) Change the order of integration and evaluate $\int_{0}^{0} \int_{\frac{x^{2}}{4a}}^{\frac{1}{2}} dy dx$. 6. a) Evaluate the integral by changing the order of integration $\int_{0}^{a} \int_{\frac{x}{a}}^{\sqrt{\frac{x}{a}}} (x^{2} + y^{2}) dy dx$ [6M]
 - b) Evaluate the integral by changing the order of integration $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx.$ [6M]

7. a) Evaluate
$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} y\sqrt{x^{2}+y^{2}} dx dy$$
 by changing in to polar coordinates [6M]

b) Evaluate
$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$$
 by changing in to polar coordinates. [6M]

8. a) Evaluate
$$\int_{0}^{2} \int_{0}^{\sqrt{2x-x^{2}}} (x^{2} + y^{2}) dy dx$$
 by changing in to polar coordinates [6M]

Algebra and Calculus

b) Evaluate $\int_{0}^{1} \int_{0}^{1} \sqrt{x^{2} + y^{2}} dy dx$ by changing in to polar coordinates. [6N	b) Evaluate	$\int_{0}^{a} \int_{0}^{\sqrt{a^2}}$	$\int \frac{dx^2}{\sqrt{x^2 + y^2}} dy dx$	by changing in to polar coordinates.	[6M]
--	-------------	--------------------------------------	--	--------------------------------------	------

9. a) Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dxdydz}{\sqrt{1-x^{2}-y^{2}-z^{2}}}$$
[6M]

b) Evaluate
$$\int_{0}^{\log 2} \int_{0}^{x+y} \int_{0}^{x+y+z} dx dy dz$$
 [6M]

10. a) Evaluate
$$\iint_{-1}^{1} \int_{x-z}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$$
 [6M]

b) Evaluate
$$\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{e^x} \log z \, dx \, dx \, dy$$
[6M]

<u>UNIT –V</u>

1	a) Define Beta and Gamma functions and Prove that $\Gamma(1) = 1$.	[6M]
	b) Evaluate $\int_0^1 x^2 \left(\log \frac{1}{x}\right)^3$.	[6M]
2.	a) Prove that $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.	[6M]
	b) Prove that $\int_0^1 \frac{x}{\sqrt{1-x^5}} dx = \frac{1}{5} B\left(\frac{2}{5}, \frac{1}{2}\right)$.	[6M]
3.	Prove that $B(m, n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$ where m>0, n>0	[12M]
4.	a) Prove that $\int_{0}^{1} \frac{x}{\sqrt{1-x^2}} dx = \frac{1}{2} \beta (1, \frac{1}{2}).$	[6M]
	b) Express the integral $\int_0^3 \frac{dx}{\sqrt{9-x^2}}$ in terms of Beta function	[6M]
5.	a) Prove that $\int_0^1 (\log \frac{1}{x})^{n-1} dx = \tau(n).$	[6M]
	b) Prove that $\beta(m,n) = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1}\theta \cdot \cos^{2n-1}\theta d\theta$.	[6M]
6.	a) Evaluate $\int_0^1 x^4 \left(\log \frac{1}{x} \right)^3 dx$.	[6M]
	b) Prove that $\int_0^1 \sqrt{1 - y^4} dy = \frac{1}{4} \beta \left(\frac{1}{4}, \frac{3}{2} \right)$	[6M]
7.	a) Evaluate $\int_0^1 \frac{dx}{\sqrt{-\log x}}$	[6M]
	b) Evaluate $\beta\left(\frac{4}{3},\frac{5}{3}\right)$	[6M]
8.	a) Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.	[6M]
	b) Prove that $\int_0^{\frac{\pi}{2}} \sin^2\theta \cos^4\theta d\theta = \frac{\pi}{32}$	[6M]

Algebra and Calculus

QUESTION BANK 2019

	QUESTION BANK	2019
9. a) Show that $\int_0^\infty x^4 e^{-x^2} dx = \frac{3\sqrt{\pi}}{8}$		[6M]
b) Evaluate $\int_0^1 x^3 \sqrt{1-x} dx$ using β - Γ functions.		[6M]
10. Show that $\int_0^1 \frac{x^2 dx}{\sqrt{1-x^4}} x \int_0^1 \frac{dx}{\sqrt{1-x^4}} = \frac{\pi}{4}$.		[12M]